Introduction:

Quadratic functions are fundamental in algebra and have extensive applications in various fields, including data analysis. In the context of education, quadratic models can be employed to analyze trends and disparities in educational attainment across different demographics. This module aims to equip instructors with the tools to teach quadratic functions through the lens of real-world, culturally pertinent data, thereby enhancing student engagement and understanding.

Exercise 1: Analyzing Educational Attainment Trends

Objective: 

Utilize quadratic regression to model and analyze trends in educational attainment over the past ten years in the specified Texas metropolitan areas.

Data Collectioin

-Gather data on the percentage of individuals aged 25 and over who have attained a bachelor's degree or higher, segmented by race and gender, for each year from 2015 to 2024.

-Sources for this data may include the U.S. Census Bureau and local educational reports.

Educational Attainment Data (2015-2024)

Year      Area      White(M)    White(F)    Black(M)     Black(F)     Hispanic (M)    Hispanic (F)     Asian(M/F)

2015     Dallas     35%             38%            20%             25%             15%                 18%                  50%

2015 SanAntonio32%             35%            18%             22%             12%                 15%                  48%

2015 Austin           40%            42%            22%             27%             17%                20%                  55%

2015 McAllen        28%             30%            15%            18%             10%                12%                   45%

2016 Dallas           35.5%          38.5%         20.5%         25.5%          15.5%             18.5%               50.5%

2016 SanAntonio32.5%            35.5%         18.5%.        22.5%         12.5%              15.5%              48.5%

2016 Austin          40.5%            42.5%         22.5%        27.5%         17.5%               20.5%             55.5%

2016 McAllen.       28.5%            30.5%         15.5%       18.5%          10.5%               12.5%.            45.5%

2017 Dallas           36%               39%             21%          26%             16%                  19%                 51%

2017 SanAntonio  33  %             36%             19%          23%              13%                  16%                 49%

2017 Austin           41%                43%             23%          28%             18%                   21%               56%

2017 McAllen         29%                31%            16%           19%             11%                  13%               46%

2018 Dallas            36.5%             39.5%         21.5%        26.5%          16.5%               19.5%           51.5%

2018 SanAntonio   33.5%            36.5%         19.5%         23.5%          13.5%               16.5%          49.5%

2018 Austin             41.5%           43.5%          23.5%        28.5%           18.5%               21.5%          56.5%

2018 McAllen          29.5%            31.5%         16.5%         19.5%          11.5%                13.5%         46.5%

2019 Dallas             37%                40%             22%            27%            17%                   20%              52%

2019 SanAntonio    34%                37%            20%             24%            14%                  17%               50%

2019 Austin             42%                44%             24%             29%            19%                  22%               57%

2019 McAllen           30%               32%              17%            20%              12%                14%                47%

2020 Dallas              37.5%             40.5%          22.5%         27.5%           17.5%             20.5%            52.5%

2020 San Antonio    34.5%             37.5%         20.5%         24.5%           14.5%             17.5%            50.5%

2020 Austin               42.5%             44.5%         24.5%         29.5%           19.5%             22.5%            57.5%

2020 McAllen             30.5%            32.5%         17.5%         20.5%          12.5%              14.5%            47.5%

2021 Dallas                38%               41%             23%            28%              18%                21%                53%

2021 SanAntonio       35%               38%            21%            25%               15%               18%                 51%

2021 Austin                 43%               45%           25%            30%                20%                23%              58%

2021 McAllen              31%                33%          18%            21%                13%                15%               48%

2022 Dallas                 38.5%           41.5%         23.5%        28.5%             18.5%             21.5%           53.5%

2022 SanAntonio       35.5%           38.5%         21.5%        25.5%              15.5%            18.5%           51.5%

2022 Austin                43.5%           45.5%         25.5%        30.5%               20.5%           23.5%           58.5%

2022 McAllen            31.5%             33.5%        18.5%        21.5%               13.5%           15.5%           48.5%

2023 Dallas               39%                42%           24%           29%                   19%              22%              54%

2023 SanAntonio      36%               39%           22%           26%                   16%              19%              52%

2023 Austin                44%              46%           26%           31%                    21%             24%              59% 

2024 Dallas                 38%              41%          23%           28%.                    18%             21%             53%

2024 SanAntonio        35%              38%         20%           24%                     14%             17%             51%

2024 Austin                  43%              45%        25%            30%                    19%              22%            58%

2024  McAllen               31%              33%       17%            20%                     12%            14%            48%

Use the provided data to plot trends, apply quadratic regression, and analyze disparities in educational attainment.

laptop computer on glass-top table

Data Analysis:

-Plot the collected data points for each demographic group.

-Apply quadratic regression to fit a curve to the data for each group.

- Interpret the coefficients of the quadratic function to understand the nature of the trends (e.g., accelerating improvement, deceleration, or decline).

person touching and pointing MacBook Pro

Discussion:

-Compare the trends across different demographic groups and metropolitan areas.
-Discuss potential factors contributing to observed disparities, such as socioeconomic status, access to educational resources, and historical contexts.

Exercise 2: Projecting Future Attainment Rates

Objective: Use quadratic models to project future educational attainment rates and assess the potential impact of policy interventions.

Step 1

Model Extension:

-Extend the quadratic models developed in Exercise 1 to project educational attainment rates up to the year 2030.

-Analyze the reliability of these projections by considering the goodness of fit of the models.

step 2

Policy Simulation:

-Introduce hypothetical policy interventions aimed at improving educational attainment (e.g., scholarship programs, community educational initiatives).

-Adjust the quadratic models to simulate the potential impact of these interventions on future attainment rates.

step 3

Evaluation:

-Assess which demographic groups would benefit most from the proposed interventions.

- Discuss the feasibility and potential challenges of implementing such policies in the different metropolitan areas.

Exercise 3: Exploring the Gender Gap in Higher Education

Objective: Investigate the quadratic relationship between time and the gender gap in
higher education attainment within the specified regions.

Data Acquisition:

  • Collect data on the number of males and females aged 25 and over who
    have obtained a bachelor's degree or higher from 2015 to 2024 in each
    metropolitan area.

Gap Analysis:

  • -Calculate the percentage point difference between male and female
    attainment rates for each year.
    -Use quadratic regression to model the trajectory of this gender gap over
    time.

Interpretation:

  • -Determine whether the gender gap is widening or narrowing and at what
    rate.
    -Explore possible reasons for these trends, considering cultural, economic,
    and policy-related factors.
Summary & Writing Component

In a reflective essay of 300-400 words, analyze how quadratic functions can be utilized to
understand and address disparities in educational attainment. Consider the following
points:
ï‚·The advantages of using quadratic models over linear models in capturing the
complexities of educational data.
ï‚·The role of culturally relevant data in making mathematical concepts more
relatable and impactful for students.
ï‚·Strategies for educators to incorporate real-world data into their teaching of
quadratic functions to highlight social issues and promote critical thinking.


This module not only reinforces mathematical concepts but also encourages instructors
and students to engage deeply with pressing social issues, fostering a more inclusive and
socially aware educational environment.


Note: The data used in this module is based on information from the U.S. Census Bureau
and local educational reports. For the most accurate and up-to-date data, please refer to
the latest publications from these sources.

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>